Tuesday, February 9, 2010

2/10 pubmed: adipose stem cell

Please add updates@feedmyinbox.com to your address book to make sure you receive these messages in the future.
pubmed: adipose stem cell Feed My Inbox

Troubleshooting: Quantification of mobilization of progenitor cell subsets from bone marrow in vivo.
February 9, 2010 at 7:08 AM

Troubleshooting: Quantification of mobilization of progenitor cell subsets from bone marrow in vivo.

J Pharmacol Toxicol Methods. 2010 Feb 4;

Authors: Pitchford SC, Hahnel MJ, Jones CP, Rankin SM

INTRODUCTION: The molecular mechanisms that control the mobilization of specific stem cell subsets from the bone marrow are currently being intensely investigated. It is anticipated that boosting the mobilization of these stem cells via pharmacological intervention will not only produce more effective strategies for bone marrow transplant patients, but also provide novel therapeutic approaches for tissue regeneration. METHODS: Measurement of stem cell mobilization by sampling peripheral blood is problematic because it is technically difficult to accurately determine absolute numbers of rare progenitor cells by blood sampling. Furthermore a rise in progenitors may be caused by release of stem cells from tissues other than the bone marrow (e.g. spleen, adipose), or indeed an inhibition of stem cell homing back to the bone marrow or other tissues. Finally it is not possible to distinguish whether the pharmacological agent is acting directly at the level of the bone m! arrow or mobilizing progenitors by a distinct indirect mechanism. To resolve these problems, we have developed a technique that allows perfusion of the vasculature of the hind limb bone marrow in situ in mice. In this system, the femoral artery and vein are cannulated in situ such that the femur and tibia bone marrow are perfused in isolation under anaesthesia. As such, pharmacological agents can be administered directly into the bone marrow vasculature. Mobilized cells are then collected via the femoral vein and colony assays performed in defined growth media to allow identification of haematopoietic, endothelial, and mesenchymal progenitor cells. We have used this system to determine the ability of a CXCR4 antagonist to mobilize these distinct types of progenitor cells from the bone marrow of mice pre-conditioned with either G-CSF or VEGF. RESULTS AND CONCLUSION: This isolated hind limb perfusion system has allowed comparisons to be made between cytokines (G-CSF, VEGF) th! at act chronically, either alone or in combination with agents! that ac t acutely on the bone marrow (CXCR4 antagonist) on their ability to directly mobilize specific populations of stem cells. Data obtained therefore gives a more accurate understanding of the efficacy of different mobilizing strategies compared to peripheral blood analysis.

PMID: 20139021 [PubMed - as supplied by publisher]

 

This email was sent to agupta1213+termsc@gmail.comAccount Login
Don't want to receive this feed any longer? Unsubscribe here
This email was carefully delivered by Feed My Inbox. 230 Franklin Road Suite 814 Franklin, TN 37064

No comments: