Thursday, August 5, 2010

8/6 pubmed: adipose stem cell

  Feed My Inbox  
     
     
    pubmed: adipose stem cell    
   
The biological activities of (1,3)-(1,6)-beta-d-glucan and porous electrospun PLGA membranes containing beta-glucan in human dermal fibroblasts and adipose tissue-derived stem cells.
August 5, 2010 at 12:03 PM
   
   
   
   
 
Related Articles

The biological activities of (1,3)-(1,6)-beta-d-glucan and porous electrospun PLGA membranes containing beta-glucan in human dermal fibroblasts and adipose tissue-derived stem cells.

Biomed Mater. 2010 Aug;5(4):044109

Authors: Woo YI, Park BJ, Kim HL, Lee MH, Kim J, Yang YI, Kim JK, Tsubaki K, Han DW, Park JC

In this study, we investigated the possible roles of (1,3)-(1,6)-beta-d-glucan (beta-glucan) and porous electrospun poly-lactide-co-glycolide (PLGA) membranes containing beta-glucan for skin wound healing, especially their effect on adult human dermal fibroblast (aHDF) and adipose tissue-derived stem cell (ADSC) activation, proliferation, migration, collagen gel contraction and biological safety tests of the prepared membrane. This study demonstrated that beta-glucan and porous PLGA membranes containing beta-glucan have enhanced the cellular responses, proliferation and migration, of aHDFs and ADSCs and the result of a collagen gel contraction assay also revealed that collagen gels contract strongly after 4 h post-gelation incubation with beta-glucan. Furthermore, we confirmed that porous PLGA membranes containing beta-glucan are biologically safe for wound healing study. These results indicate that the porous PLGA membranes containing beta-glucan interacted favorably with the membrane and the topical administration of beta-glucan was useful in promoting wound healing. Therefore, our study suggests that beta-glucan and porous PLGA membranes containing beta-glucan may be useful as a material for enhancing wound healing.

PMID: 20683126 [PubMed - in process]

 
   
         
   
Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model.
August 5, 2010 at 12:03 PM
   
   
   
   
 
Related Articles

Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model.

J Korean Med Sci. 2010 May;25(5):746-51

Authors: Lim JS, Yoo G

In this study, the authors investigated the effects of adipose-derived stromal cells (ADSCs) and of their extract on wound healing. After creating wound healing splint model on the backs of mice, ADSCs and their extract were applied. Wound healing rates were calculated at 3, 5, 7, 10, and 14 days after the wounding, and tissues were harvested at 7 and 14 days for histological analysis. Wound healing rates were significantly higher at 7, 10, and 14 days in the cell group than in the control, but in the cell extract group wound healing rates were significantly decreased (P<0.05). Histological scores and capillary densities in the cell group were significantly higher at 2 weeks (P<0.05). In the cell group, thick inflammatory cell infiltration and many capillaries were observed at 1 week, and thick epithelium and numerous large capillaries were observed at 2 weeks. The present study suggests that ADSCs accelerate wound healing as known, and the effects of ADSCs on wound healing may be due to replacing insufficient cells by differentiation of ADSCs in the wound and secreting growth factors by differentiated cells, and not due to the effect of factors within ADSCs.

PMID: 20436712 [PubMed - indexed for MEDLINE]

 
   
         
     
     
 
This email was sent to agupta1213+termsc@gmail.com.
Delivered by Feed My Inbox.
230 Franklin Road Suite 814 Franklin, TN 37064
Account Login
Unsubscribe Here
 
     

No comments: