Saturday, August 7, 2010

8/8 TERMSC

  Feed My Inbox  
     
     
    TERMSC    
   
An efficient transfection method for mouse embryonic stem cells.
August 7, 2010 at 5:47 PM
   
   
   
   
 
Related Articles

An efficient transfection method for mouse embryonic stem cells.

Methods Mol Biol. 2010;650:145-53

Authors: Liou JY, Ko BS, Chang TC

Embryonic stem (ES) cells are an important source of stem cells in tissue engineering and regenerative medicine because of their high self-renewal capacities and differentiation potentials. However, the detailed molecular mechanisms controlling the differentiation and renewal programs in ES cells remained unclear. One of the difficulties in understanding these mechanisms substantially results from the low efficacies of gene manipulation by delivering exogenous gene expression or knockdown of endogenous gene expression with small interfering RNA (siRNA) in ES cells. Here we describe an optimized protocol for efficiently transfecting mouse ES cells by Effectene, a liposome-based method. The high transfection efficiency in mouse ES cells is demonstrated in this chapter by (1) achieving a percentage of enhanced green fluorescence protein (EGFP) expression in >98% embryoid bodies after introducing plasmids encoding the protein and (2) decreased SOX-2 and Oct-3/4 expression and subsequent morphological evidence of cell differentiation after introducing siRNA expression for suppressing SOX-2 and Oct-3/4, which are known to be essential for maintenance of stem cell properties in mouse ES cells.

PMID: 20686950 [PubMed - in process]

 
   
         
   
A review on endogenous regenerative technology in periodontal regenerative medicine.
August 7, 2010 at 12:47 PM
   
   
   
   
 
Related Articles

A review on endogenous regenerative technology in periodontal regenerative medicine.

Biomaterials. 2010 Aug 2;

Authors: Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF

Periodontitis is a globally prevalent inflammatory disease that causes the destruction of the tooth-supporting apparatus and potentially leads to tooth loss. Currently, the methods to reconstitute lost periodontal structures (i.e. alveolar bone, periodontal ligament, and root cementum) have relied on conventional mechanical, anti-infective modalities followed by a range of regenerative procedures such as guided tissue regeneration, the use of bone replacement grafts and exogenous growth factors (GFs), and recently developed tissue engineering technologies. However, all current or emerging paradigms have either been shown to have limited and variable outcomes or have yet to be developed for clinical use. To accelerate clinical translation, there is an ongoing need to develop therapeutics based on endogenous regenerative technology (ERT), which can stimulate latent self-repair mechanisms in patients and harness the host's innate capacity for regeneration. ERT in periodontics applies the patient's own regenerative 'tools', i.e. patient-derived GFs and fibrin scaffolds, sometimes in association with commercialized products (e.g. Emdogain((R)) and Bio-Oss((R))), to create a material niche in an injured site where the progenitor/stem cells from neighboring tissues can be recruited for in situ periodontal regeneration. The choice of materials and the design of implantable devices influence therapeutic potential and the number and invasiveness of the associated clinical procedures. The interplay and optimization of each niche component involved in ERT are particularly important to comprehend how to make the desired cell response safe and effective for therapeutics. In this review, the emerging opportunities and challenges of ERT that avoid the ex vivo culture of autologous cells are addressed in the context of new approaches for engineering or regeneration of functional periodontal tissues by exploiting the use of platelet-rich products and its associated formulations as key endogenous resources for future clinical management of periodontal tissue defects.

PMID: 20684986 [PubMed - as supplied by publisher]

 
   
         
     
     
 
This email was sent to regenmd@gmail.com.
Delivered by Feed My Inbox.
230 Franklin Road Suite 814 Franklin, TN 37064
Account Login
Unsubscribe Here
 
     

No comments: